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a b s t r a c t

A novel uncertainty propagation method for problems characterized by highly non-linear
or discontinuous system responses is presented. The approach is based on a Padé–Legendre
(PL) formalism which does not require modifications to existing computational tools (non-
intrusive approach) and it is a global method. The paper presents a novel PL method for
problems in multiple dimensions, which is non-trivial in the Padé literature. In addition,
a filtering procedure is developed in order to minimize the errors introduced in the approx-
imation close to the discontinuities. The numerical examples include fluid dynamic prob-
lems characterized by shock waves: a simple dual throat nozzle problem with uncertain
initial state, and the turbulent transonic flow over a transonic airfoil where the flight con-
ditions are assumed to be uncertain. Results are presented in terms of statistics of both
shock position and strength and are compared to Monte Carlo simulations.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The aerodynamic performance of vehicles flying at high speed are profoundly affected by the presence of shock waves.
Among the most dominant effects, the added resistance associated to the energy losses (wave drag), and the interaction
of shocks and the viscous boundary layers have received considerable attention. In particular, the latter can potentially lead
to massive flow separation and thus requires careful analysis even in the early design phase. Shock/boundary layer interac-
tion is affected by a variety of factors including the conditions of the incoming flow, the surface geometry and the fluid prop-
erties within the boundary layer. It is known that changes in few parameters, namely the flight Mach and Reynolds numbers
can lead to sharp non-monotonic variation of the length and characteristics of the interaction zone [13] with obvious impact
on the overall flow behavior.

Numerical simulations are routinely employed to perform aerodynamic design and analysis of transonic and supersonic
configurations. Reynolds averaged Navier–Stokes computations have been used in a variety of studies (see for example, [14])
identifying the effect of the incoming flow conditions but also the potential inaccuracy related to the turbulence modeling
[15]. More recently, direct numerical simulation investigations have studied the details of the shock/boundary layer inter-
action at a more fundamental level [16].

Most numerical investigations of shock dominated flows focus on the predictive capabilities of various approaches; the
operating conditions, for example, are defined according to relevant experimental studies with the objective of performing
controlled validation. On the other hand various factors can introduce uncertainty in the measurement setup thus creating
difficulties in identifying the appropriate conditions to be used in the corresponding simulations. In transonic flows, one of
the most commonly used test-cases is the flow around the RAE2822 airfoil [12]. In this specific problem, the presence of the
. All rights reserved.
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wind-tunnel walls is known to have an effect on the overall flow characteristics and also the inflow conditions are known in
the test chamber with a limited precision – 4% uncertainty in Mach number. Given the sensitivity of the shock–boundary
layer interaction it is indeed important to assess the influence of uncertainty in the numerical flow conditions on the
predictions.

It must be noted that, when the problem is strongly non-linear such as in transonic flows, it is generally difficult to estab-
lish the sensitivity of the output of interest by performing perturbation analysis on the input parameters. In the present
work, we develop a novel numerical approach to overcome this difficulty. More specifically, the objective of the proposed
method is to accurately propagate the uncertainty in the problem definition on the statistics of the shock position and
strength. The approach is based on a probabilistic representation of uncertainties where the conventional deterministic in-
puts are replaced by random variables. This process inherently creates additional independent variables in the problem,
and therefore we typically refer to a deterministic domain characterized by the physical dimensions and a stochastic space
identified by the random variables. In the proposed method, we construct the response surface on the combination of these
physical and stochastic spaces. Clearly, the total number of dimensions is at least two and a multi-dimensional method is
required.

The proposed method is not limited to applications related to high speed flows and is a general approach for the solution
of stochastic partial differential equations that exhibit discontinuities or solutions with high gradients in the physical do-
main and/or in the stochastic dimensions.

In the problems presented herein, the location of the shocks as well as their strength are not known a priori and are func-
tions of uncertain parameters which depend on the operating conditions. In the following, the proposed method is explained
in details. Firstly, we present the approach in one-dimensional settings for conceptual understandings. Then we formulate its
extension to multi-dimensional problems. Next, applications to discontinuous solution of the Burgers equations are pre-
sented. The final application is the analysis of the turbulent flow around the RAE2822 airfoil with uncertainty in the spec-
ification of the incoming Mach number.
2. Proposed method

Probabilistic assessment of uncertainty in computational models consists of three major phases: (i) data assimilation in
which the input parameters are characterized (in terms of probability distributions) from observations and physical evi-
dence; (ii) uncertainty propagation in which the input variabilities are propagated through the mathematical model; and
(iii) certification in which the output of the numerical predictions are characterized in terms of their statistical properties
and confidence bounds are derived [17].

In the present work we focus on the propagation phase and assume distributions for the input parameters. The simplest
approach to obtain the output statistics in response to input distributions is the Monte Carlo method, in which a large num-
ber of independent calculations are computed; in many practical cases the number of realizations required is too large and
results in prohibitively high computational cost, especially for complex fluid dynamics computations. In recent years, two
alternative approaches have found relatively widespread use: stochastic Galerkin [18,34,29,22] and stochastic collocation
[31,19,20,30]. Stochastic Galerkin approaches are generally based on an expansion of the random quantities in terms of suit-
able global (or local) basis. These schemes are intrusive, in the sense that the deterministic solvers are modified to incorpo-
rate the stochastic expansions. On the other hand, in the stochastic collocation method only few computations are carried
out corresponding to precise specification of the input variables, typically corresponding to classical quadrature points; this
approach is therefore non-intrusive.

In their original form, both stochastic Galerkin and stochastic collocation schemes become inaccurate in the presence of
discontinuities in probability space due to the Gibbs phenomenon. A number of extensions to these two methods have been
proposed to remedy the problem. Among those the basis enrichment of polynomial chaos expansions [21] in which prior
knowledge about the behavior of the solution is incorporated in the selection of enriching basis functions. With an educated
selection of the additional bases, the method is shown to improve the accuracy and convergence rate of the stochastic
approximations. Multi-element generalized polynomial chaos (ME-gPC) [23] and multi-element probabilistic collocation
method (ME-PCM) are extensions of generalized polynomial chaos and stochastic collocation technique, respectively, that
can improve the accuracy of those techniques provided that an efficient a posteriori error estimates are available.

In ME-gPC, the stochastic domain is decomposed into small elements. The generalized polynomial chaos expansion is
then employed in each of these subdomains [23] thus possibly leading to hp-type convergence in the probability space.
The partitioning of the probability space can be performed in an iterative manner by considering relative error in the re-
sponse variance [22]. In ME-PCM, similar to ME-gPC, the stochastic domain is divided into subdomains. In each subdomain,
the probabilistic collocation method is then employed [24,25]. Both ME-PCM and ME-gPC are local methods.

In the present work, we have developed an alternative global approach to deal with discontinuities in probability space.
One potential benefit is the decrease in the computational cost compared to a local method. The proposed approach is cou-
pled with a stochastic collocation scheme although it is possible, in principle, to formulate it as an intrusive Galerkin-type
approach. Our method is based on Padé approximation of discontinuous functions. A Padé approximation is a rational func-
tion – a ratio of two polynomials – that can be thought as a generalization of a Taylor series expansion. In deterministic con-
text, Padé approximants have been used in a variety of fields such as network theory, optimal control and quantum
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mechanics [2]. In its original form, one calculates the Padé approximant of a function from its given power series. In recent
extensions on Padé approximation, one writes the numerator and denominator polynomials as finite sums of orthogonal ba-
sis polynomials whose coefficients can be calculated from the function values at a predefined set of points. Examples of these
recent extensions include Padé–Jacobi [32], Padé–Chebyshev [33] and Padé–Legendre approximants [1] which are the basis
of the present study.

The method proposed here is simple, efficient and non-intrusive. The first step is to perform a number of deterministic
calculations with input parameters chosen as quadrature points in the stochastic dimensions based on which a PL approx-
imant is constructed as a response surface. In the applications presented here, this surface is function of both the uncertain
parameters and the physical coordinates. Finally we sample from the response surface and extract the quantities of interest
and their statistics.

In the following, Legendre polynomial expansions and the required quadrature rules are briefly introduced; in-depth dis-
cussions of these topics are available in the literature, see for example [7,1]. The one-dimensional Padé–Legendre method is
then presented as a conceptual starting point. Finally, a novel extension of the PL method to multiple dimensions is
formulated.

2.1. Legendre expansions

Let L2ð�1;1Þ be the Hilbert space of square integrable functions u, defined on (�1,1) and equipped with the scalar product
hu;vi :¼
Z 1

�1
uðxÞvðxÞdx: ð1Þ
A complete basis of L2ð�1;1Þ is formed by the Legendre polynomial PnðxÞ defined by
hPn; Pmi ¼
1

nþ 1=2
dnm; n; m 2 N [ f0g: ð2Þ
where d is the Kronecker delta and N is the set of positive integers. Eqs. (1) and (2) uniquely define the Legendre polynomial
series: 1; x; 1

2 ð3x2 � 1Þ; 1
2 ð5x3 � 3xÞ; . . . with the first term being P0. One can also construct Legendre polynomials from the

three-term recursive relation:
ðnþ 1ÞPnþ1ðxÞ ¼ ð2nþ 1ÞxPnðxÞ � nPn�1ðxÞ: ð3Þ
It follows that every function in this Hilbert space has an L2-convergent expansion in Legendre basis:
u ¼
X1
n¼0

ûnPn; ð4Þ
where ûn is the nth Legendre coefficient of u defined by ûn :¼ hu; Pni=hPn; Pni. For N 2 N, one can approximate u with the trun-
cated series of order N as u �

PN
n¼0ûnPn. The rate of convergence of the error is related solely to the smoothness of u with the

error estimate:
u�
XN

n¼0

ûnPn

�����
����� 6 cN�skukHs 8N 2 N; ð5Þ
when u belongs to the Sobolev space Hsð�1;1Þ. Here, c is a constant independent of N [1]. It is well understood that, for a
discontinuous function u, the expansion (4) converges slowly, OðN�1Þ for the mean, due to the Gibbs phenomenon.

2.2. Gauss quadratures

In most problems, one knows the function values only at the finite number of points in the domain. Thus, a discrete scalar
product is required. In analogy to the continuous scalar product equation (1), the discrete scalar product of functions / and w
is defined by
h/;wiN ¼
XN

j¼0

/ðxjÞwðxjÞwj; ð6Þ
where the quadrature points xj and the associated weights wj are predefined.
The formulation shown above is for one-dimensional problem, however, Gauss quadratures can be easily extended to

higher dimensions by using tensor products of one-dimensional Legendre polynomials as the basis. The Legendre expansions
and discrete scalar products then follow in a straightforward manner.

2.3. One-dimensional Padé–Legendre approximation

Based on the discrete scalar product, the definition of a Padé–Legendre (PL) approximant for one-dimensional problems
follows the one used in [1]. For any non-negative integer k, let Pk be the set of all polynomials whose degrees are less than or
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equal to k. Let u be a function to be represented on [�1,1]. Given the integers M and L, the pair of polynomials P 2 PM and
Q 2 PL are said to be a solution of the ðN;M; LÞ Padé–Legendre interpolation problem of u if:
hP � Qu;/iN ¼ 0 8/ 2 PN ð7Þ
and
8x 2 ½�1;1�; QðxÞ > 0: ð8Þ

The rational function RðuÞ :¼ P=Q is then defined as an approximation of u. If (7) and (8) admit a solution, one can show that
the solution is unique provided that M þ L 6 N [1]. In addition, it can be shown that the rational function RðuÞ is an inter-
polation of u, i.e.,
RðuÞðxjÞ ¼ uðxjÞ; ð9Þ
at all quadrature points xj [1]. In this work, we use Gauss quadrature to evaluate the discrete scalar products. Our choice is
dictated by the need to achieve high-order accuracy in the computation presented below.

Remark. It is worth noting that although the PL formulation formally yields the same order of accuracy as typical
polynomial expansion, it can better represent cases with singularities and discontinuities in which the ordinary polynomial
expansions generally fail [2]. Intuitively, Eq. (7) shows that given a discontinuous function u, the polynomial Q represents a
pre-conditioner that produces a smooth function Qu which then can be effectively approximated by the polynomial P.

The rational approximation RðuÞ is constructed by first defining the functions P and Q as linear combinations of Legendre
polynomials of order M and L, respectively,
P ¼
XM

j¼0

p̂jPj; ð10Þ

Q ¼
XL

j¼0

q̂jPj: ð11Þ
In the following, we present a procedure to compute the coefficients in the Legendre expansions of P and Q such that Eq. (7)
is satisfied.

Assume N ¼ M þ L from now on. First, we compute the denominator Q. From (7) and the fact that P 2 PM , choosing / to be
Legendre polynomials Pn where n > M gives
hQu; PniN ¼ hP; PniN ¼ 0 8n ¼ M þ 1; . . . ;M þ L: ð12Þ
Plugging (11) and (6) into (8), we arrive at a linear system whose solution returns q̂j.
huP0; PMþ1iN � � � huPL; PMþ1iN
..
. . .

. ..
.

huP0; PMþLiN � � � huPL; PMþLiN

2
664

3
775

q̂0

..

.

q̂L

2
664

3
775 ¼ 0: ð13Þ
We define the above matrix A and the solution vector q. Note that A is L� ðLþ 1Þ matrix. We seek a non-zero solution to
Aq ¼ 0 with kqk ¼ 1. Moreover, for computation efficiency, we decompose the matrix A into the product of three matrices
A ¼ BCD with B 2 RL;Nþ1, the diagonal matrix C 2 RNþ1;Nþ1, and D 2 RNþ1;Lþ1 defined by
Bi;j ¼ PMþiðxjÞwj; 1 6 i 6 L; 0 6 j 6 N;

Ci;j ¼ uiðxjÞdij; 0 6 i 6 N; 0 6 j 6 N

Di;j ¼ PjðxiÞ; 0 6 i 6 N; 0 6 j 6 L:

ð14Þ
Note that the matrices B and D only depend on the parameters N; M and L and not on the data u.
Once the denominator Q is known, the computation of the coefficients of the numerator P is straightforward, i.e.,
p̂n ¼
hP; PniN
hPn; PniN

¼ hQu; PniN
hPn; PniN

; n ¼ 0;1; . . . ;M; ð15Þ
where the discrete inner products h�; �iN is given by (6).

Remark. The above procedure does not guarantee the condition (8). To the authors’ knowledge it is not possible to formally
ensure this condition. However, as will be described in Section 2.6, a simple Q-dependent filter is proposed to alleviate this
problem.
2.4. Multi-dimensional Padé–Legendre approximation

All the cases we consider have two or more dimensions since we construct the Padé response surface on the combination
of physical and stochastic spaces. Therefore, in the examples, we always have a minimum of two dimensions.
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It is not trivial to generalize the Padé formulation to multiple dimensions. In the literature, many generalizations exist but
with certain restrictions on their applications. These include homogeneous Padé [9], Padé–Padé [6], nested Padé [10], etc.
One of the main difficulties is the fact that in higher dimensions, there is no obvious correspondence between the number
of polynomial coefficients (coefficients of the expansions of P and Q) and the number of equations one can use [8], in other
words there is no equivalent relationship to the equation N ¼ M þ L in the one-dimensional case. Interested readers are re-
ferred to [6,8,9] on this subject. In the present work, we restrict ourselves to problems in few dimensions (up to 4).

Out of many possible multivariate formalisms, the least-squares Padé approximation [11] is presented in this work. For
the sake of simplicity, the approximation is formulated in a two-dimensional setting; however, the generalization to higher
dimensions is similar. In addition, we will consider only the isotropic cases, i.e., we consider the same number of data points
in each direction on a tensor grid. As mentioned earlier, these correspond to two-dimensional Gauss quadrature points. Let
N þ 1 be the number of data points in each direction (we have ðN þ 1Þ2 total data points).

Denote the set of two-dimensional polynomial pðx; yÞ whose total degree is less than or equal to S 2 N [ f0g as P2
S . Let us

define two-dimensional Legendre polynomials as the product of one-dimensional polynomials. Let us also assume an order-
ing identified with a sub-index: P1; P2; P3; . . . where the total degrees of polynomials in the sequence are in non-decreasing
order. This ordering is not unique and the indices do not correspond directly to the total degrees of the polynomials. In the
two-dimensional case, there are sþ 1 polynomials of degree s and there are ðsþ 1Þðsþ 2Þ=2 polynomials of degree less than
or equal to s. For notation compactness, we define cðsÞ ¼ ðsþ 1Þðsþ 2Þ=2.

Let Uða;bÞ be the set of all two-dimensional Legendre polynomials whose total degrees are higher than a but do not exceed
b, i.e.,
Uða;bÞ ¼ / 2 P2
b n P2

a j/ is a two-dimensional Legendre polynomial
� �

: ð16Þ
Let us also define vða;bÞ as a vector of the same size as Uða;bÞ and whose elements are
v i ¼ hP � Qu;/iiN; i ¼ 1;2;3; . . . ; jUða;bÞj; ð17Þ
where /i is the ith member of Uða;bÞ (the order is not important). We are now ready to state the two-dimensional Padé–Legen-
dre problem.

Given integers M; L; K and N such that M þ K 6 N, the pair of polynomials P 2 P2
M and Q 2 P2

L is said to be a solution of
the ðN;M; L;KÞ two-dimensional least-squares PL approximation problem of u if
hP � Qu;/iN ¼ 0 8/ 2 P2
M ; ð18Þ

kvðM;MþKÞk is minimal; ð19Þ
and
8ðx; yÞ 2 ½�1;1� � ½�1;1�; Qðx; yÞ > 0: ð20Þ
Fig. 1 shows the schematic relation among the parameters N;M, and K. Each stencil point in the diagram represents the mul-
ti-index of the two-dimensional Legendre polynomial basis, /i, used in the computation. The notation cðsÞ represents the
total number of the polynomials in the triangular area up to degree s. The problem definition stated above then requires that
v i ¼ hP � Qu;/iiN be exactly zero in the lower triangle in the diagram (Eq. (18)) and minimized in the least-squares sense in
the strip of width K away from this triangle (condition (19)).

Remark. It is worth noting that we can no longer require that hP � Qu;/iN ¼ 0 for all polynomials / up to (total) degree N as
in the one-dimensional case since there would be more constraints (equations) than unknown coefficients. Thus, the
formulation is based on finding a solution that is optimal in a sense that it minimizes kvk. This has a noticeable impact on the
accuracy of the approximation near discontinuities and is one of the main reasons we recommend the use of filters as
explained in Section 2.6.

With the above-mentioned problem definition, we are now ready to formulate the algorithm to solve for the coefficients
of P and Q. The numerator P and denominator Q can then be written as
Pðx; yÞ ¼
XcðMÞ
j¼1

p̂jPjðx; yÞ ð21Þ
and
Qðx; yÞ ¼
XcðLÞ
j¼1

q̂jPjðx; yÞ: ð22Þ
The orthogonality condition holds with respect to the sub-index
hPn; Pmi ¼
1

ðnx þ 1=2Þðny þ 1=2Þ dnm; n; m 2 N [ f0g; ð23Þ
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Fig. 1. The schematic representation of various parameters in the Padé–Legendre surface construction and their relationship. The parameter L is not
presented in the diagram but has to satisfy the inequality cðM þ KÞ � cðMÞ > cðLÞ.
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where nx and ny are the polynomial degrees in x and y of Pn, respectively. Following a construction similar to the one-dimen-
sional case, we obtain a linear system to solve for coefficients q̂j,
huP1; PcðMÞþ1iN � � � huPcðLÞ; PcðMÞþ1iN
..
. . .

. ..
.

huP1; PcðMþKÞiN � � � huPcðLÞ; PcðMþKÞiN

2
664

3
775

q̂1

..

.

q̂cðLÞ

2
664

3
775 ¼ 0: ð24Þ
As before, we can also decompose the matrix A into product of three matrices A ¼ BCD with
Bi;j ¼ PiðxjÞwj; cðMÞ þ 1 6 i 6 cðM þ KÞ; 0 6 j 6 N;
Ci;j ¼ uiðxjÞdij; 0 6 i 6 N; 0 6 j 6 N;

Di;j ¼ PjðxiÞ; 0 6 i 6 N; 0 6 j 6 cðLÞ:
ð25Þ
Note that the matrix A in this case has the dimension of ðcðM þ KÞ � cðMÞÞ � cðLÞ. We require that the system is over-
constrained:
cðM þ KÞ � cðMÞ > cðLÞ: ð26Þ
This condition is easily satisfied since L is small and M is reasonably large in the cases we consider. In fact, K ¼ 1 generally
satisfies (26); however, it is beneficial to keep K P 2, as will be explained in Section 2.5.

With condition (26), we have an over-constrained linear system of equations from which we can obtain the optimal solu-
tion q in the least-squares sense. Thus, the condition (19) can be restated as choosing q to be the solution of the minimization
problem:
min
kq0k¼1

kAq0k; ð27Þ
where k � k is the L2-norm. This is easily done using the singular value decomposition of the matrix A [26]. (See Appendix A
for details.) Once the denominator Q is known, the computation of the numerator coefficients is similar to the one-dimen-
sional case:
p̂n ¼
hP; PniN
hPn; PniN

¼ hQu; PniN
hPn; PniN

; n ¼ 1;2; . . . ; cðMÞ; ð28Þ
thus leading to the approximation
uðx; yÞ �
PcðMÞ

j¼1 p̂jPjðx; yÞPcðLÞ
j¼1 q̂jPjðx; yÞ

; ð29Þ
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where q̂j and p̂j are obtained from (27) and (28), respectively. The approximation on the right hand side of (29) is referred to
as the PL response surface and is used to extract a large number of samples for computing statistics of u such as mean and
variance.

2.5. A perspective on error

From the definition (7) in the one-dimensional case and (18) and (19) in higher dimensions, we see that the present meth-
od seeks to minimize the error of the linear Padé problem, e ¼ P � Qu, projected on Legendre basis. In one dimension, the
projected error on Legendre basis up to order N is exactly zero. In the multi-dimensional settings, the projected error on
Legendre basis is zero only up to the total order M and the projected error on the Legendre basis of order from M þ 1 to
M þ K is minimized in least-squares sense.

However, when applying the rational approximation, we are interested in the error of the non-linear Padé problem
E ¼ P=Q � u ¼ e=Q . Clearly, this is the error of the linear Padé construction amplified by a factor of 1=Q . This amplification
could become large where Q is close to zero; in fact if Q ¼ 0 at some point on its support, there is a singularity in the approx-
imation, thus violating the conditions (8) and (20).

It is useful to analyze the algorithm step by step; we consider one-dimensional problem for compactness in writing. First,
we construct Q such that hQu; PniN ¼ 0, for n ¼ M þ 1; . . . ;M þ L. In other words, the nth coefficient of the Legendre expansion
of Qu vanishes for n ¼ M þ 1; . . . ;M þ L. This step can be viewed as a way to construct a pre-conditioner Q such that Qu may
have better properties (in this case, continuity of the function) than u. As the second step, we compute P from
hP � Qu; PniN ¼ 0 for n ¼ 0;1; . . . ;M, which is a standard polynomial approximation, P � Qu. As the last step, we divide P
by Q to obtain our approximation of u.

There is an implicit relation between the zeroes of the polynomial Q and the discontinuity region(s) of u. The construction
of Q requires that the highest coefficients of Legendre expansion of Qu become small (or exactly zero in the one-dimensional
case). This suggests that Q is small near the discontinuity regions of u, thus implying the proximity of the zeros of the poly-
nomial Q and the discontinuity regions. It is possible that the algorithm yields a discontinuous Qu that has a PL expansion
with certain high-order coefficients having small values. However, it is less likely that Qu will be discontinuous if a larger
number of high-order coefficients in consecutive orders are required to be small. Thus, we prefer to choose K > 1 even
though with K ¼ 1, we might already have enough equations to solve for q.

It is useful to outline that 1=Q must be small; otherwise it might lead to error amplification in the rationale approxima-
tion. On the other hand, Q is required to be very small at the discontinuities so that those are suppressed in the product Qu.

Without extra consideration, the method will therefore be effective if the error in the approximation of R ¼ P=Q is small
while Qu remains smooth. In one-dimensional problem it is possible to construct polynomials whose zeroes coincide with
the discontinuity locations (provided that L is large enough). In higher dimensions, this is not possible and there are few
additional difficulties including:

� there might be no polynomial Q whose zeroes are close to the discontinuity locations, and conversely Q might have zeros
where there are no discontinuities;

� the condition Q > 0 might be violated at some points on the support;
� the approximation P � Qu is generally not as accurate as in one-dimensional cases. In particular, the values of P on the

quadrature points can be different than the values of Qu, i.e., the approximant is not an interpolant.
−1 −0.5 0 0.5 1

−1

0

1

x

u(
x)

Data

Unfiltered

Filtered

Fig. 2. The result of using Q-dependent filter for the Padé approximation of one-dimensional step function. The denominator Q is intentionally modified –
by shifting the zero of Q by 0.1 – to yield a ‘‘bad” approximation in order to mimic possible situations in high-dimensional cases.
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Most of these problems are essentially due to the limitation of polynomials to represent arbitrary functions. To address
above issues we introduce a spatially varying filter whose weights depend on Q.

2.6. Q-dependent filter

As it was mentioned earlier, the error E ¼ P=Q � u in the approximation is amplified by a factor 1=Q from the error of the
linear Padé problem e ¼ P � Qu. The problem arises when Q becomes small or changes sign, away from the discontinuity
locations. The error will then be amplified by a large factor. This situation is likely in multi-dimensional cases, since the
calculation of the denominator Q is a minimization to an over-constraint problem (thus no solution exists for all modes
Fig. 3. Surfaces from the dual throat nozzle problem with one uncertain parameter using ðN;M;K; LÞ ¼ ð40;24;3;2Þ. No Q-dependent filter is used.



T. Chantrasmi et al. / Journal of Computational Physics 228 (2009) 7159–7180 7167
simultaneously). The problem also becomes more severe as the number of dimensions increases since the error in the least-
square minimization increases.

To alleviate this problem, we introduce a spatial filter whose weights are modified by the local value of jQ j. The weight is
increased if the value of jQ j is relatively high at that point and decreased otherwise, that is, to say we trust the approximation
more if the value of jQ j is relatively high since the resulting error will be less amplified.

To construct the weights we consider a mean filter in the same dimension as the polynomials P and Q. Let hx be the spatial
filter kernel (weight) at the point y and HðxÞ be the set of points involved in the kernel hx. A conventional spatial filter would
be applied to the approximation RðuÞ as following:
Fig. 4.
sample
no Q-de
RðuÞðxÞ ¼
X

y2HðxÞ
RðuÞðyÞhxðyÞ; ð30Þ
where RðuÞ would be the filtered Padé approximation. To construct a Q-dependent filter, we modify the original spatial filter
to take into account the value of Q by point-wise multiplying it with jQ j value (and normalize the kernel). More specifically,
RðuÞðxÞ ¼
P

y2HðxÞRðuÞðyÞjQðyÞjhxðyÞP
y2HðxÞjQðyÞjhxðyÞ

: ð31Þ
Remark. One advantage of Q-dependent filtering over other types of filtering to remedy Gibbs phenomenon in spectral
methods is that our filter does not require fine tuning of the parameters. Instead, it uses the information about the
discontinuities readily available from the construction of the denominator Q to improve the original spatial filter. The only
adjustable parameter of the filter is the kernel size. From our computational study, we found that a filter kernel width that is
large enough to cover the neighboring data points produces a satisfactory result.
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Fig. 2 illustrates the application of Q-dependent filter for the Padé approximation of one-dimensional step function:
uðxÞ ¼
1 x > 0;
�1 x < 0:

�
ð32Þ
We start by computing Q from the algorithm provided in Section 2 with L ¼ 2. This is a parabola with a single zero at x ¼ 0.
Next, we intentionally shift the zero of Q by 0.1 to mimic possible situations in high-dimensional cases (by replacing x with
x� 0:1 in the expression of Q). Then we proceed to compute the numerator P and the rational approximant R from the shifted
Q. The approximant exhibits a large overshoot near the discontinuity. This overshoot is roughly where the new zero of Q is;
the error is large here because it is amplified by a large factor 1=Q . When the Q-dependent filter is applied the overshoot is
substantially decreased.

3. Numerical examples

The proposed PL formulation is applied to two problems dominated by discontinuities. In the first example, we consider a
problem that resembles an isentropic flow in a dual throat nozzle [3]. It involves the solution of the Burgers equation with a
source term. The steady-state solution depends on the initial condition in which we introduce one or more uncertain
parameters. The second problem is related to the transonic flow around the RAE2822 airfoil and involves the solution of
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the compressible Reynolds averaged Navier–Stokes equations. In the latter case, the uncertainty is directly related to the
flight conditions.

We note here that in all cases presented below a multi-dimensional PL formulation is required. In each problem, we con-
sider one physical dimension and one or more stochastic dimension(s).

3.1. Dual throat nozzle problem with one uncertain parameter

According to isentropic theory of compressible flows in a dual throat nozzle with equal throat areas [3], the steady-state
solution is completely subsonic or supersonic, or it contains a shock wave that determines a switch between the two flow
regimes. If the shock exists, its location depends solely on the initial condition [4]. Here we use a simplified model based on
the Burgers equations which was analyzed in [3]:
Fig. 6.
cases K
@u
@t
þ @

@z
u2

2

� �
¼ @

@z
sin2 z

2

 !
; 0 6 z 6 p; t > 0; ð33Þ
with the initial condition uðz;0Þ ¼ b sin z, and boundary conditions uð0; tÞ ¼ uðp; tÞ ¼ 0. We are interested in the steady-state
solution of (33) when b is a random variable b 2 ½�1;1�. Specifically,
b ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a2
p

2a
; ð34Þ
where a is a Gaussian random variable with zero mean and variance r2.
Analytical solutions for u as well as the probability distribution of the shock location corresponding to b, defined above,

have been derived in [5].
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For each b, the solution has a single shock. The shock location and strength vary with b as shown in Fig. 3(a).
To apply the Padé–Legendre method, we proceed as the following: (1) we perform deterministic simulations for different

values of b in the spirit of stochastic collocation [19] and then extract the solutions only at a finite number of x location; (2)
we construct a two-dimensional PL representation as a function of the scaled physical coordinate, x, where x ¼ z=p, and sto-
chastic coordinate, b; (3) we sample a large number of solutions from this representation according to the prescribed distri-
bution of b; and (4) we extract from each of these solutions the shock location and build the desired statistics.

In this particular case, both the computed steady-state solutions and the PDF of the shock locations can be compared with
the analytical values in [5]. The Padé–Legendre response surface is shown in Fig. 3(b) using ðN;M;K; LÞ ¼ ð40;24;3;2Þ.

Fig. 4 shows mean and variance of the solution u extracted from the PL surface with r ¼ 0:6. A large number of samples
can be extracted from the surface (29) to ensure that the mean and variance converge with respect to the number of samples.
In this case, 106 samples are used and found to be sufficient to achieve convergence. Mean and variance calculated from stan-
dard stochastic collocation method [19] on the same tensor-product grid are also presented for comparison. The collocation
method employs the same data points and number of samples used in PL method. Clearly, the PL method performs much
better than the standard collocation method in reducing the spurious oscillations due to the Gibbs phenomenon. Note that
Table 1
List of all ðN;M;K; LÞ parameter sets shown in this section.

Case N M K L

1 40 18 3 2
2 60 18 3 2
3 40 26 3 2
4 60 30 3 2
5 40 18 5 2
6 40 18 3 4
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the variance of the PL solution appears to be lower than the exact solution. This is due to the fact that the reconstructed sur-
face is smoother than the actual discontinuous surface. This error can be reduced as we increase the parameters (N; M; K
and L) as shown later in Section 3.1.1.

Fig. 6 shows errors of the approximated mean and variance of solutions as a function of x as the order of approximation
increases. N is varied from 10 to 60 and M is increased accordingly, while K and L are set to 3 and 2, respectively. For each set
of parameters, 106 samples are drawn from the reconstructed surface in order to obtain the statistics. The expected conver-
gence in the mean and variance with respect to the order of approximation (N and M) is observed. The errors in both mean
and variance are concentrated in the region where the shocks are likely to occur. For the mean, the relative error is used; this
error measure is point-wise error normalized by the exact local mean. On the other hand, the relative error for the variance is
a poor indicator since away from the shock, the variance is very close to zero; therefore, the absolute error in variance is
reported here instead.

Fig. 5 shows the PDFs of the shock locations for the low-variability case r ¼ 0:1 and high-variability case r ¼ 0:6 com-
pared with the corresponding exact PDFs. The results are satisfactory in both cases. We note here that a more sophisticated
error representation for discontinuous functions is possible. In particular, one can first compare the shock location of the pre-
dicted solution to the exact solution, and then proceed to compare the entire solutions at the same position relative to its
corresponding shock position as in [27]. In this paper, for the sake of simplicity, we choose to compare solutions at the same
fixed positions.

In the sub-section below, the effects of the parameters N; M; K and L as well as the Q-dependent filter are discussed. In
general, using higher-order polynomial reconstruction results in more accurate results; however, there are certain con-
straints and guidelines in the choices of these parameters.

3.1.1. Sensitivity of PL reconstruction
In this sub-section, we arbitrarily selected a base case of ðN;M;K; LÞ ¼ ð40;18;3;2Þ for computing the mean and variance

of the solution u with r ¼ 0:6. We increase each of the parameters and compare the results with the base case; initially no
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Q-dependent filter is used. For each parameter, we have considered four different values. In general, increasing a parameter
results in consistently more accurate results and, therefore, for the sake of compactness, we present below only one value in
addition to the base case for each parameter. All the parameter sets presented here are listed in Table 1; the base case is case
1 in the table.

One constraint we have observed through this investigation is that the higher-order modes are severely contaminated
and should not be used to compute the denominator. The rough guideline for this constraint is as following:
M þ K <
2N
3
: ð35Þ
For all cases presented here the above relationship is satisfied. Fig. 7 shows the effects of increasing N and M (cases 2–4). In
the first two cases, each parameter is increased while, in the last case, both are increased simultaneously. For both mean and
variance, increasing N alone improves the solution only slightly. This suggests that the discrete inner product is calculated
accurately, since the orders of the denominator and numerators as well as the equations to compute the denominator remain
the same. Increasing M alone shows better improvement, especially in the variance. Increasing M affects the approximation
in two ways: (1) the product Qu is approximated with more terms, and (2) the denominator is calculated with inner products
with higher-order polynomials. While the former effect improves the accuracy of the approximation, the latter might cause
an unexpected result due to change in the contamination in the higher-order modes. Increasing both N and M while still ful-
filling the constraint (35) reduces the error substantially. In this case, the product Qu is more accurately approximately while
the calculation of the denominator is kept away from such contamination.

Fig. 8 shows the effects of varying K and L (cases 5 and 6). The parameters K and L are varied independently from the base
case. In both cases, small improvements are observed as expected. This suggests that the computation of the denominator is
consistent and it does not change significantly with the parameters K and L.

For each case above, two calculations have been carried out, with and without the Q-dependent filter. Suppose that G is
the grid on which we want to obtain the filtered PL surface. We assume that this grid is uniform in all directions. Let m be the
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number of points along each direction of G. To construct the filter as described in Section 2.6, we first compute the kernel
width from
nH ¼ 2
m
2N

l m
þ 1; ð36Þ
where dse is the smallest integer greater or equal to s. This makes the kernel large enough to cover the closest data points. The
Q-dependent filter is based on the mean filter. This means that the kernel weight hxðyÞ is a constant. Since we know the size
of the kernel from (36), we can compute this constant simply from:
hxðyÞ ¼ n�d
H ; ð37Þ
where d is the dimension of the problem (including both physical and stochastic dimensions). Plugging (36) into (31), we
obtain the final Q-dependent filter:
RðuÞðxÞ ¼
P

y2HðxÞRðuÞðyÞjQðyÞjn�d
HP

y2HðxÞjQðyÞjn�d
H

; ð38Þ
where HðxÞ � G includes all the points in the box, centered at x and covered m=2N points away from x in each direction. Q
and RðuÞ ¼ P=Q are the values obtained from the construction without a filter. We use this Q-dependent filter throughout the
paper with fixed m ¼ 1000.
Fig. 10. Response surface of the case ðN;M;K; LÞ ¼ ð40;20;3;3Þ with and without a Q-dependent filter.



0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

m
ea

n 
of

 u

exact
filtered
not filtered

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

va
ria

nc
e 

of
 u

exact
filtered
not filtered

Fig. 11. Mean and variance of the solution u of the case ðN;M;K; LÞ ¼ ð40;20;3;3Þ with and without a Q-dependent filter.

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

x

u

(a) N = 15

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

x

u

(b) N = 20

Fig. 12. Random samples of the solutions of the dual throat problem with two uncertain parameters. The solutions are extracted from Padé–Legendre
reconstructed surfaces using N ¼ 15 and N ¼ 20 with an average Q-dependent filter.

7174 T. Chantrasmi et al. / Journal of Computational Physics 228 (2009) 7159–7180



T. Chantrasmi et al. / Journal of Computational Physics 228 (2009) 7159–7180 7175
In most cases, we observed the same trend when applying the filter: the mean of u does not visibly change while the var-
iance is slightly reduced. This is expected as the filter tends to smooth out the surface thus reducing the variance of the sam-
ples from the surface. One example with and without filter is reported in Fig. 9.

In certain cases, however, using a Q-dependent filter improves the results substantially by removing the spurious errors
caused by small or zero Q. Fig. 10 compares the response surfaces of one such case – ðN;M;K; LÞ ¼ ð40;20;3;3Þ – with and
without a Q-dependent filter. In this case, the denominator order L is odd and Q crosses zero along a certain curve on the
support. As a result, the error is very high near that curve where Q is zero. Applying a Q-dependent filter effectively removes
this large error. Fig. 11 shows the effects of the filter on mean and variance of the approximated solution u from this param-
eter set with r ¼ 0:6. It is hard to observe the improvement in the mean possibly because the support of the region with the
large error is small. However, the application of the filter results in clear improvement in the variance.

3.2. Dual throat nozzle problem with two uncertain parameters

The dual throat nozzle problem in the previous section can be extended (and made more challenging) by introducing
additional uncertain parameters in the definition of the initial conditions. In this case, we consider the uncertain initial con-
dition characterized by a random field
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Fig. 16. The response surface of Cp of the region x=c 2 ½0:5; 0:85� as Ma varies uniformly from 0.725 to 0.775.
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where a ¼ p=2; b ¼ 10, and the increasing sequence fxng satisfies
1
b �xn tanðxnaÞ ¼ 0 if n is odd;
xn þ 1

b tanðxnaÞ ¼ 0 if n is even:

(
ð42Þ
Note that the individual steady-state solutions will be of the same form as in the previous case with one uncertain param-
eter, however, the probability distribution of the shock location is different. In this simulation, we use r ¼ 0:4 and
a1;a2 	 Nð0;0:3Þ as in the high-variability case from [5]. Fig. 12 shows 100 samples from Padé–Legendre reconstructed sur-
faces using N ¼ 15 ðL ¼ 2; M ¼ 10; K ¼ 3Þ and N ¼ 20 ðL ¼ 2; M ¼ 14; K ¼ 3Þ. A Q-dependent filter based on the mean spa-
tial filter is used. Fig. 13 shows PDFs of the shock location obtained with the PL method and compared to Monte Carlo
simulation with 20,000 samples.

3.3. Transonic airfoil

The second application of the proposed method involves the computation of the flow around a transonic airfoil, the
RAE2822 airfoil. The flow conditions are specified in terms of Reynolds and Mach number as Re ¼ 6:2� 106 and
Ma ¼ 0:75; the angle of attack is a ¼ 2:8
. These conditions correspond to Case 10 in [12]. The flow is characterized by a
strong interaction of the boundary layer developing on the airfoil and a shock wave on the upper surface; this can lead to
separation and affect the overall aerodynamic forces. The objective of the present study is to identify the effect of the uncer-
tainty in the flight conditions (specifically in the Mach number) on the flow characteristic and, more specifically, on the over-
all surface pressure distribution. The experimental uncertainty in the free-stream conditions � 4% [12]; in the present
simulations we assumed Ma to be uniformly distributed in the interval [0.725,0.775].

The calculations presented are performed using SUmb [28], a parallel multiblock Reynolds averaged Navier–Stokes based
on finite volume second-ordered discretization. The computational grid consists of 256� 64 elements in a C-grid with strong
clustering in the near-wall region to capture the boundary layer. Turbulence is modeled using k—x Wilcox turbulence model
[35]. In the present exercise we are not specifically focused on the accuracy of the turbulence model and its ability to rep-
resent the experimental observation, although ultimately this is of crucial importance. Our objective is to demonstrate that
the present PL formulation allows us to efficiently construct a response surface for the wall pressure coefficient and to ex-
tract accurate statistics.

The Mach number range identified earlier leads to considerable variability in terms of the wall pressure coefficient Cp

(Fig. 14) as well as of the flow field (Fig. 15). The calculations show that the shock on the upper surface moves considerably
downstream while becoming stronger. On the other hand, the discontinuity in the wall pressure coefficient becomes weaker.

We focus our attention on the wall pressure coefficient Cp within the shock/boundary layer interaction region, roughly
corresponding to x=c (x-position normalized by chord length) in the range [0.5,0.85] on the top surface. Fig. 16 shows the
calculated surface response of Cp in this region of interest. The surface clearly indicates the shock location varying as a func-
tion of the uncertain parameter similar to previous problems, thus justifying the use of the PL formulation.

We compare our predictions using the PL approach with Monte Carlo results obtained using 5000 samples which were
found to be sufficient for achieving convergence in the statistics.

Fig. 17 shows the computed mean and variance of Cp. Two sets of Padé–Legendre parameters are used to test the robust-
ness of the method: (a) ðN;M;K; LÞ ¼ ð15;10;3;2Þ and (b) ðN;M;K; LÞ ¼ ð20;14;3;2Þ; as usual the Q-dependent filter is used.
The mean is captured accurately in both cases. There is some discrepancy in the peak variance for the former case. This is due
to insufficient resolution in the construction of the surface response, as observed in the two-dimensional dual throat nozzle
test case. In that case, the problem does not persist when we increase N to 20.
4. Conclusions

A Padé–Legendre approach for propagating input uncertainties in problems characterized by strong non-linearity and dis-
continuous response surfaces has been introduced. It is successfully applied to fluid-dynamic problems dominated by the
presence of shocks. The method has higher efficiency and accuracy with respect to standard spectral stochastic Galerkin
methods and does not require a priori knowledge of the discontinuity location. In the present approach, a rational polynomial
is used to represent the response surface containing sharp interfaces. The convergence of the scheme has been verified with
respect to Monte Carlo statistics and also by changing the order of the polynomial interpolants.

We have extended the method to multiple dimensions by using a non-uniform filter dependent on the denominator of the
rational interpolation function. This has proved to be robust in the problems of interest.
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Appendix A. Singular value decomposition

Suppose A is a n-by-p matrix. The SVD theorem states that there exists a factorization of A of the form
A ¼ USV�; ðA:1Þ
where U is an n-by-n unitary matrix, V is an p-by-p unitary matrix and S is an n-by-p diagonal matrix with non-negative
numbers on the diagonal. V � denotes the conjugate transpose of V. This factorization is called a singular value decomposition
of A.

Calculating the SVD consists of finding the eigenvales and eigenvectors of AA� and A�A. The eigenvectors of AA� make up
the columns of U and those of A�A do those of V. The singular values in S are square roots of the eigenvalues from AA�. Con-
ventionally, the diagonal entries of S are arranged in descending order.

We would like to use SVD to solve the minimization problem (27), restated below
min
kq�k¼1

kAq�k: ðA:2Þ
We start by decomposing A with SVD. Since U is unitary, it follows that
kAq0k2 ¼ q0�A�Aq0 ðA:3Þ
¼ q0�VS�U�USV�q0 ðA:4Þ
¼ q0�VS�SV�q0 ðA:5Þ
¼ x�K2x ðA:6Þ
¼ kKxk2

; ðA:7Þ
where x ¼ V�q0; K2 ¼ S�S and K is a diagonal square matrix with non-negative elements. Note further that, since V is unitary,
it follows that
kxk2 ¼ x�x ¼ q0�VV�q0 ¼ q0�q0 ¼ kq0k2 ¼ 1: ðA:8Þ
Thus, the minimization problem (A.2) reduces to
min
kxk¼1

kKxk: ðA:9Þ
Clearly, the solution to this problem is x ¼ e1, since the first diagonal element in S is the smallest (and thus that in K is the
smallest). Therefore, V�q ¼ e1 and q ¼ Ve1. In short, the solution to the minimization problem (A.2) is the last column of V.
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